Oracle Exadata Database Machine v2

Hüsnü Şensoy

Global Maksimum Data & Information Technologies Founder, VLDB Expert husnu.sensoy@globalmaksimum.com

Introduction

- Why do we need Exadata ?
- Understanding Exadata v2
 - Exadata v2 Hardware
 - Exadata v2 Software
- Conclusion

Global Maksimum & Exadata v2

- Only company in Turkey having IB interconnected RAC 11g implementation experience on Linux x86-64bit.
- Only company in Turkey having sufficient consultancy experience (more than 120 TB conventional system data) on Exadata v2
 - Physical & Architecture Design
 - Migration
 - Performance Optimization
 - Backup & Recovery Architectures Design
- Trains customers, Oracle partners, and Oracle employees all over the Europe
- Strong joint relation with Oracle Platinum Partners, Oracle Development Team Head Office, and IB technology leaders.
- **X-Migrator** service provider for high capacity customers.

Oracle Exadata Database Machine v2

Introduction

- Engineers
 - To learn that «The mechanic with a hammer thinks that all problems are nail»
- Customers
 - Shorter setup time
- Non-Exadata Customers
 - More stable Oracle releases
- Oracle
 - Easy to manage/standardize its code repository

Oracle Exadata Database Machine v2

Exadata v2 Hardware

Exadata v2 from 10.000 ft

48-port Gigabit Ethernet Switch **SERVICE STEPSWITCHED** KVM IP Console Switch

Capacity & Performance

Sun Fire[™] X4170 as RAC Node

		-			
1	<u>*</u>				
1	1: 200000000	1. 2000	Terres Terres	Transfer I - Transfer	
		[[t:]aaaa			

- 2 socket Quad Core
 - 2.53 GHz
 - 2 Hyper-Threads
 - So, CPU_COUNT=16
- 18 DDR3 DIMM Slots
 - 72 GB@800 MHz (2x3x3x4 GB)
- 4 10/100/1000Base-T Ethernet ports
 - **NET0** : Management
 - **NET1** : Public Network
 - **NET2** : Public Network
 - NET3 : -

Sun Fire™ X4275 as Storage Node

		÷.			
ĬĨ	:	 #		#	
	#[

- 2 socket Quad Core
 - 2.53 GHz
 - 2 Hyper-Threads
- 6 DDR3 DIMM Slots
 - 24 GB@1066 MHz (2x3x1x4 GB)
- HDD Storage
 - 12x600 GB 15K RPM SAS disks
 - 12x2 TB 7.2K RPM SATA disks
- 4 Sun Flash Accelerator F20 PCIe Cards

HDD Sequential Read Performance

HDD Random Read Performance

F20 PCIe Card

- Neither SATA nor SAS interface SSD driver. But a PCIe card having a embedded SAS controller managing 4 Solid State Flash Disk Modules (*FMod*) each of 24 GB size.
 - Embedded controller will expose 16 (4 cards x 4 FMod) Linux devices.
 - /dev/sdn
- SuperCap Power Reserve (EnergyStorageModule) provides write-back operation mode.
 - ESM should be enabled for optimal write performance
 - Should be replaced in every two years.
 - Can be monitored using various tools like ILOM
- 4K sector boundary for *Fmods*
- Each *FMod* consists of several NAND modules best performance can be reached with multithreading (32+ thread/*FMod* etc)

F20 Performance

Random Write Performance Degeneration

•As the flash cache get full (sustained write)

- Wear Leveling
- SLC Update Mechanism : Delete + Write
- Garbage Collector

write performance is degenerated due to Write Amplification.

That's why you are not advised to put *real-time performance* demanding files on flash cards

Read: 1.1 GB/s

InfiniBand

Classical Data Center

IB Data Center

<u>Reliable Datagram Socket</u>

- Oracle has worked on applicability of some alternatives
 - *IPoIB* high CPU overhead, same unreliable delivery (UDP)
 - *SDP* connection oriented
- RDS
 - 50% less CPU than IPOIB, UDP
 - ¹/₂ Latency of UDP (no user-mode acks)
 - Decoupled from user-mode CPU loading
 - Passes all Oracle regression tests in < 2 wks !!!!
 - Supports fail-over across and within HCAs
- With in Exadata cluster RDS
 - is used for cache fusion (*bcopy*).
 - is used to request an I/O from storage cell (*bcopy*).
 - is used for data shipment from storage node to RAC nodes (*RDMA*).
 - is not used for RAC heartbeat over cluster (*TCP*).

Oracle Exadata Database Machine v2

Exadata v2 Software

Exadata v2 Specific Software

- Smart Scan
- Storage Indexes
- Smart Flash Cache
- I/O Resource Manager
- Exadata Hybrid Columnar Compression (EHCC)

Storage Cell Soft Components

- CELLSRV
 - Multithreaded block server
 - Buffer cache reads
 - Smart scans
 - Performs I/O Resource Management
 - Gather operational statistics
 - Communicates over *iDB* with the clients.
- MS
 - OC4J application
 - Provides functionalities for
 - o Cell management
 - o Cell administration
 - Aler generation
- RS
 - First process becoming live in storage cell.
 - Work as a hang analyzer for CELLSRV and MS

What is Smart Scan ?

- Smart Scan is initially formed to be column and row filtering based on projection and predicates.
- But this was just the seed idea. Today Smart Scan can also do
 - Projection (column) filtering
 - Predicate (row) filtering
 - o SELECT * FROM v\$sqlfn_metadata WHERE offloadable = 'YES';
 - Preparation of bloom filters for join
 - Smart Incremental backup
 - Scan on encrypted data
 - Smart File Creation
 - o RMAN Restore
 - o Tablespace Creation
 - File Grow
 - Scoring for Data Mining
 - All data mining scoring functions are offloaded

- Smart Scan is about saving RAC node CPUs during I/O processing, but storage index is about saving the processors of Exadata storage cells.
- Storage Index is not something first used in Exadata. It is borrowed from *Netezza ZoneMap*.
 - Oracle's SI is in memory
- It is about filtering out for a super set of actual result set.

Go to Coffee Break & Next Executions

Smart Flash Cache

- Smart Flash Cache is the idea to cache some storage cell data into F20 flash cache drives so that subsequent access will not require disk access.
- Oracle uses flash cache in write-through mode:
 - Don't confuse this with internal operation of the F20 cards.
 - Although F20 cards are persistent mediums, CELLSRV will not ack the client until write ack returns from disk I/O.
- Smart Flash Cache is logically a non-persistent medium meaning that it's content will be lost/useless in case of a cell reboot.
 - That's mainly because the content of a flash cache is kept in a hash table by CELLSRV.

Good/Bad Things for Caching

Good Things

- Frequently accessed data and index blocks.
- Control file reads and writes.
- File header reads and writes.

Bad Things

- I/Os to mirror copies.
- Backup-related I/O
- Data Pump I/O
- Data file formatting.
- Redo Write Operations.

Smart Flash Cache Read Hit

Smart Flash Cache Read Miss read block x iDB cache hash table IORM CELLSRV

